
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 130
APRIL 1975, PAGES 554-558

An Algorithm for Winding Numbers
for Closed Polygonal Paths

By Kenneth 0. Leland*

Abstract. A winding number algorithm for closed polygonal paths (not necessarily

simple) based on the notion of counting the number of oriented "signed cuts" of

the negative x axis by the path is given. The algorithm is justified by a theory of

integer-valued analogues of the complex log function. The algorithm is much

simpler than those of J. V. Petty [this journal, v. 27, 1973, pp. 333-337] and

H. R. P. Ferguson [Notices Amer. Math. Soc., v. 20, 1973, p. A-21 1] and leads

to faster computation.

1. Introduction. J. V. Petty [3] and H. R. P. Ferguson [1] have given com-
puter implemented algorithms for computing winding numbers, based upon complex
analysis results and which do not involve inverse trigonometric functions or integral
approximation techniques. Petty's algorithm does not involve division and Ferguson's

caq be altered slightly to eliminate division. A theory of integer-valued analogues of
the complex analytic log function is developed in [2] which yields two quite differ-
ent approaches to winding numbers and degree theory in general. The simpler one,
reported here, cannot be generalized to the higher-dimensional case. The algorithm
based on it is much simpler than those of Petty and Ferguson and leads to faster

computation. Essentially, the algorithm traverses the path noting the number of
times the path cuts the negative x axis, (- oo, 0), assigning each such cut a plus
or minus sign, depending on whether the cut was from above the axis to below or
vice versa. The sum of these "signed cuts" is the winding number given by complex
function theory.

2. The Theory. Let P be a continuous function on a real closed interval

[a, b] into the complex plane C. P is called a path. P is said to be closed if P(a) =

P(b). Suppose P is closed and piecewise continuously differentiable. Then, classically,
for zo a point of C not lying in P* = range(P) = {P(t)Ia < t < b}, the winding num-
ber wp(zo) of P about zo is defined as

Received September 28, 1973.
AMS (MOS) subject classifications (1970). Primary 30-04, 65E05; Secondary 30A90.
Key words and phrases. Computation of winding numbers, closed polygonal paths, turning

point string, computer program, integer-valued log function analogues, topological analysis,
signed cut.

* This research performed while the author was a National Research Council senior
resident research associate.

Copyright (1975, American Mathematical Society

554

WINDING NUMBERS FOR CLOSED POLYGONAL PATHS 555

(2rri)-Y 'f*(z - zo)- 1 dz = (27ri)- 1fb(P(t) - zo)- 1 dP(t).

If for x E [a, b] one sets

f(x) f(P(t) -- z dt

where co is a suitable constant determined by P(a), then we observe that ef (x) = P(x)
for x G [a, b] and

2rri wp(z0) = f(b) - f(a).

Whyburn [4] and others have made use of such "log" functions to define winding
numbers. This equivalent definition, used in this paper, obviates the need to employ
integrals or impose differentiability requirements on P.

For z, w E C, let [z, w] denote the directed closed interval of C, {(1 - t)z +

twO < t < l}. Let Z= (z z1, , zn) be a finite sequence of points of C. Then
P is called a polygonal path with (turning point) string Z, if there exists a subdivision

a = xo < ... < Xn = b of [a, b] compatible with P, that is, P(Xk) = Zk and

Pt [x,, x,, 1]) = [x,, x,, 1]for all k = O, 1, * * *,. n and j= O, 1, * * * n - 1 .

For z E C, set h(z) =0 if Im(z) > 0 and set h(z) = 1 if lm(z) < 0. Then h is

the characteristic function of the lower open half-plane.
THEOREM 1. Let P be a closed polygonal path with string (z0 * n, Z) such

that O 4 P*. For k = O, 1, * * *, n - 1, set:
(1) Sk = 0 if [Zk, Zk+1] contains no point of (- oo, 0).

(2) Sk = h(zk+ 1) - h(zk) if [Zk, Zk+ 11 contains a point of (- oo, 0). Then

n-1

WPM0
=

E: Sk.
j=0

We observe that if sk = 1, then [Zk, Zk+ 11 cuts (- 0, 0) from above to below,

etc.
Proof We require a suitable "branch" g of the analytic log function. We can

choose g on CO = C - {O} so that:

(1) eg(')=zforz CCo

(2) g is continuous on CO - (- oo, 0).

(3) For c E (- oo, 0),

(a) g(c) = lim g(z) = logicI + irr,
z-*c,Im (z)> 0

(b) lim g(z) = logIci - irr.
z-+c,Im (z)< 0

Clearly, g(z) + 2rri *h(z) is continuous on CO - (O, + 00).

Forx E [Xk, xk+l), k= O, 1, * * , n - 1, set

556 KENNETH 0. LELAND

u(x) =goP(x) + 21ri lskL [hoP(x) - hoP(xk) + E s] i

where g o P(x) = g(P(x)) for x E [a, b] and EY,'s. = 0, and set

n-1
u(b) = g o P(b) + 2rri E S .

jO0

Now eu(x) = eg? P(X) = P(x) for x C [a, b] and

~~~ ~n-1 n-1 
u(b) - u(a) = go P(b) + 2iri , s] - go P(a) = 2rri E s, 

0o 0j0 

since P(a) = P(b). 

Now if we show that u is continuous, then, from the definition of winding 
number, we would have 

n-1 

2iriwp(O) = u(b) - u(a) = 2rri E si. 
j0= 

Let k = O, 1, * * *, n - 1. Now if [Zk, Zk+ 1 contains a point of (-00, 0), then for 

all x C [Xk, Xk+ 1 I and some Ck C C, we have P(x) C [Zk, Zk+ 1] CO -(0, + 00) 

and 

u(x) = (2rri * h + g) o P(x) + Ck, 

and thus u is continuous on [Xk, Xk + 1 ). Similarly, if [Zk, Zk + 1 contains no point 
of (- oo, 0), then for all x C [Xk, Xk+ 1) and some ck C C, P(x)G CO o-(-oo, 0) 
and 

u(x) = goP(x) + Ck, 

and thus u is continuous on [Xk, Xk+ i). Thus u is continuous on [a, b] and the 
theorem follows. 

We observe that if we set uo(x) [u(x) - go P(x)] (2rri)- 1, then uo is integer- 
valued and uo may be regarded as an integer-valued analogue of the function u derived 
from the analytic theory. 

To implement Theorem 1 as an algorithm, we need the following lemma. 
LEMMA2. LetA =a+bi, B=c+diGCsuch thatb<Oandd>Oor 

d < 0 and b > 0 and set 

Up=+ 1 ifd<b and Up=- 1 ifb<d 

and set Det = bc - ad. Then 

(1) 0 C [A, B] if and only if Det = 0. 

(2) [A, B] contains a point of (- ', 0) if and only if Det* Up < 0. 



WINDING NUMBERS FOR CLOSED POLYGONAL PATHS 557 

Proof For some unique t C [0, 1], we have that D = (1 -t)A + tB = A + 

t(B - A) lies on the x axis. Then 

0 = Im(D) = b + t(d - b) and t = b/(b - d), 

and thus D = Real(D) = a + t(c - a) = (- da + bc)/(b - d) = Det/(b - d). Thus 

0 C [a, b] if and only if D = 0 and D = 0 if and only if Det = 0. Moreover, 
D C (- o0, 0) if and only if Det/(b - d) < 0 and the latter holds if and only if 

Det * Up < 0. 

3. The Algorithm. We are given a closed polygonal path P with string (zo, ... 

zn) and a point Q of C. For k = 0, 1, n, set 

ak + bkl z -Q* 

The algorithm consists of going through the following steps for each k = 0, 1, * 

n - 1 and either finding that Q C [zk, Zk+ 1] P* or computing sk; and then (if 

Q 4 P*) forming the sum ynik=O Sk which is the desired winding number wp(Q). 
Step 1. Set Up = + I if bk < O and bk+ 1 > ?, and set Up = - I if bk < O 

and bk+ 1 > 0, and set Up = 0 if neither case holds. If Up = 0, go to Step 2, and 

if Up $ 0, go to Step 3. 

Step 2. If bk=bk+ = and 0 G[ak, ak+ ],thenQ P* and the process 
is terminated. Otherwise, set Sk = 0 and start the process again at Step 1 with k + 1. 

Step 3. Set Det = ak+ lbk -akbk+ 1. If Det = 0, Q G [Zk, Zk+ 1] C P* 
and the process is terminated. If Up * Det > 0, [zk, Zk+ 11 contains no point of 

(-00, 0) and we set Sk = 0. If Up * Det < 0, then [zk, Zk+ 11 contains a point of 

(-00, 0) and we set Sk =- Up. 

We then return to Step 1 and start the process again with k + 1. 

4. The Computer Program. A CDC FORTRAN EXTENDED program based 
on the algorithm has been tested on a CDC 6600 computer for several examples. 

The program was compiled at the most commonly used level of optimization and at 

the highest level of optimization at the installation of the author. (Improvement 

attained by using the highest level was negligible.) A typical test example, Case 1, 

consisted of a closed polygonal path P with a turning point string of 37 points and 

27,200 points for which the program computed the winding numbers or determined 

that the points were on P* and the algorithm was not required to be carried 

out fully. Case 1 required 10.66 seconds of central processor time. 

For comparison purposes, programs supplied to the author for Petty's and 

Ferguson's algorithms were compiled and tested on the same examples. Ferguson's 

program was slightly altered to convert it to integer format. The author's program 

on the average ran 1.4 times faster than Petty's and five to six times faster than 

Ferguson's. In particular, for Case 1, Petty's and Ferguson's programs required 14.07 



558 KENNETH 0. LELAND 

seconds and 56.01 seconds,respectively. 
The author was given the results of a comparison of his and Petty's programs 

run on an IBM 360/65 computer. On this machine, on the average, the author's 
program ran twice as fast as Petty's. In particular, for Case 1, the times were 9.47 
seconds versus 19.75 seconds. Thus, in general, the author's program is 1.4 to 2.0 
times faster than Petty's depending on the choice of machine. 

The author's algorithm is sensitive to the number of cuts of the x axis made by 
the path, whereas Petty's algorithm is sensitive to the number of cuts of both the x 
and y axis, especially the y axis. If examples are deliberately constructed to maximize 
cuts of the x axis and minimize cuts of the y axis, it is possible to make Petty's 
program run much faster than the author's. In general, however, if a randomly con- 
structed example is rotated ninety degrees, or the x and y axis are interchanged, the 
running time for both programs is little changed. Ferguson's algorithm is equally 
sensitive to cuts of the x axis and of the y axis. Rotation, etc. of any of the exam- 
ples tested had negligible effect on the running time of Ferguson's program. 

On an IBM 360/65 [3], Petty's program was seven to ten times as fast as a 
program based upon evaluating a line integral by using antidifferentiation. 

All of the points, including the turning points, were Gaussian integers and all 
computations were done in integer format. Case 1 ran one-half second slower when 
handled by the author's program written in floating-point format. 

Acknowledgment. The author would like to thank the referee for his sug- 
gestions on comparing the speeds of the algorithms discussed in this paper and for 
test data (run on an IBM 360/65) he provided. 

Aerospace Research Laboratories (LB) 
Building 450 
Wright-Patterson AFB, Ohio 45433 

1. H. R. P. FERGUSON, Point in Polygon Algorithms: A Critical Element in Urban Data 
Systems, Urban Data Center, Univ. of Washington, NTIS PB219-671; Notices Amer. Math. Soc., 
v. 20, 1973. Abstract #701-68-2. 

2. K. 0. LELAND, "Computer generated winding numbers and integer valued analogues 
of the log function" (Preliminary Report), Notices Amer. Math. Soc., v. 20, 1973. Abstract 
#73T-B 177. 

3. J. V. PETTY, "A winding number algorithm for closed polygonal paths," Math. Comp., 
v. 27, 1973, pp. 333-337. 

4. G. T. WHYBURN, Topological Analysis, 2nd. rev. ed., Princeton Math. Series, no. 23, 
Princeton Univ. Press, Princeton, N. J., 1964. MR 29 #2758. 


	Cit r181_c183: 


